An Unsupervised Change Detection Based on Test Statistic and Ki from Multi-temporal and Full Polarimetric Sar Images

نویسندگان

  • J. Q. Zhao
  • J. Yang
  • P. X. Li
  • M. Y. Liu
  • Y. M. Shi
چکیده

Accurate and timely change detection of Earth’s surface features is extremely important for understanding relationships and interactions between people and natural phenomena. Many traditional methods of change detection only use a part of polarization information and the supervised threshold selection. Those methods are insufficiency and time-costing. In this paper, we present a novel unsupervised change-detection method based on quad-polarimetric SAR data and automatic threshold selection to solve the problem of change detection. First, speckle noise is removed for the two registered SAR images. Second, the similarity measure is calculated by the test statistic, and automatic threshold selection of KI is introduced to obtain the change map. The efficiency of the proposed method is demonstrated by the quad-pol SAR images acquired by Radarsat-2 over Wuhan of China * Corresponding author

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Change Detection of Multi-polarimetric Sar Data Based on Principal Component Analysis

Recently, Polarimetric SAR (PolSAR) techniques have been much studied as hot research topics in the area of SAR. The objective of this paper is to assess the Principal component analysis (PCA) technique combining with multi-polarimetric SAR data for change detection. PCA proposed in this paper give an effective and quick way to achieve the difference map from the whole multi-temporal images, an...

متن کامل

Change Detection in Urban Area Using Decision Level Fusion of Change Maps Extracted from Optic and SAR Images

The last few decades witnessed high urban growth rates in many countries. Urban growth can be mapped and measured by using remote sensing data and techniques along with several statistical measures. The purpose of this research is to detect the urban change that is used for urban planning. Change detection using remote sensing images can be classified into three methods: algebra-based, transfor...

متن کامل

An Unsupervised Method of Change Detection in Multi-Temporal PolSAR Data Using a Test Statistic and an Improved K&I Algorithm

In recent years, multi-temporal imagery from spaceborne sensors has provided a fast and practical means for surveying and assessing changes in terrain surfaces. Owing to the all-weather imaging capability, polarimetric synthetic aperture radar (PolSAR) has become a key tool for change detection. Change detection methods include both unsupervised and supervised methods. Supervised change detecti...

متن کامل

Change detection from satellite images based on optimal asymmetric thresholding the difference image

As a process to detect changes in land cover by using multi-temporal satellite images, change detection is one of the practical subjects in field of remote sensing. Any progress on this issue increase the accuracy of results as well as facilitating and accelerating the analysis of multi-temporal data and reducing the cost of producing geospatial information. In this study, an unsupervised chang...

متن کامل

A Study of Unsupervised Change Detection Based on Test Statistic and Gaussian Mixture Model Using Polsar Sar Data

To solve the problems of existing method of change detection using fully polarimetric SAR which not takes full advantage of polarimetric information and the result of false alarm rate of which is high, a method is proposed based on test statistic and Gaussian mixture model in this paper. In the case of the flood disaster in Wuhan city in 2016, difference image is obtained by the likelihoodratio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016